DSPy Cheatsheet
This page will contain snippets for frequent usage patterns.
DSPy DataLoaders
Import and initializing a DataLoader Object:
Loading from HuggingFace Datasets
You can access the dataset of the splits by calling key of the corresponding split:
Loading specific splits from HuggingFace
You can also manually specify splits you want to include as a parameters and it'll return a dictionary where keys are splits that you specified:
code_alpaca = dl.from_huggingface(
"HuggingFaceH4/CodeAlpaca_20K",
split = ["train", "test"],
)
print(f"Splits in dataset: {code_alpaca.keys()}")
If you specify a single split then dataloader will return a List of dspy.Example
instead of dictionary:
code_alpaca = dl.from_huggingface(
"HuggingFaceH4/CodeAlpaca_20K",
split = "train",
)
print(f"Number of examples in split: {len(code_alpaca)}")
You can slice the split just like you do with HuggingFace Dataset too:
code_alpaca_80 = dl.from_huggingface(
"HuggingFaceH4/CodeAlpaca_20K",
split = "train[:80%]",
)
print(f"Number of examples in split: {len(code_alpaca_80)}")
code_alpaca_20_80 = dl.from_huggingface(
"HuggingFaceH4/CodeAlpaca_20K",
split = "train[20%:80%]",
)
print(f"Number of examples in split: {len(code_alpaca_20_80)}")
Loading specific subset from HuggingFace
If a dataset has a subset you can pass it as an arg like you do with load_dataset
in HuggingFace:
gms8k = dl.from_huggingface(
"gsm8k",
"main",
input_keys = ("question",),
)
print(f"Keys present in the returned dict: {list(gms8k.keys())}")
print(f"Number of examples in train set: {len(gms8k['train'])}")
print(f"Number of examples in test set: {len(gms8k['test'])}")
Loading from CSV
You can choose only selected columns from the csv by specifying them in the arguments:
dolly_100_dataset = dl.from_csv(
"dolly_subset_100_rows.csv",
fields=("instruction", "context", "response"),
input_keys=("instruction", "context")
)
Splitting a List of dspy.Example
splits = dl.train_test_split(dataset, train_size=0.8) # `dataset` is a List of dspy.Example
train_dataset = splits['train']
test_dataset = splits['test']
Sampling from List of dspy.Example
DSPy Programs
dspy.Signature
class BasicQA(dspy.Signature):
"""Answer questions with short factoid answers."""
question = dspy.InputField()
answer = dspy.OutputField(desc="often between 1 and 5 words")
dspy.ChainOfThought
generate_answer = dspy.ChainOfThought(BasicQA)
# Call the predictor on a particular input alongside a hint.
question='What is the color of the sky?'
pred = generate_answer(question=question)
dspy.ChainOfThoughtwithHint
generate_answer = dspy.ChainOfThoughtWithHint(BasicQA)
# Call the predictor on a particular input alongside a hint.
question='What is the color of the sky?'
hint = "It's what you often see during a sunny day."
pred = generate_answer(question=question, hint=hint)
dspy.ProgramOfThought
pot = dspy.ProgramOfThought(BasicQA)
question = 'Sarah has 5 apples. She buys 7 more apples from the store. How many apples does Sarah have now?'
result = pot(question=question)
print(f"Question: {question}")
print(f"Final Predicted Answer (after ProgramOfThought process): {result.answer}")
dspy.ReACT
react_module = dspy.ReAct(BasicQA)
question = 'Sarah has 5 apples. She buys 7 more apples from the store. How many apples does Sarah have now?'
result = react_module(question=question)
print(f"Question: {question}")
print(f"Final Predicted Answer (after ReAct process): {result.answer}")
dspy.Retrieve
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)
#Define Retrieve Module
retriever = dspy.Retrieve(k=3)
query='When was the first FIFA World Cup held?'
# Call the retriever on a particular query.
topK_passages = retriever(query).passages
for idx, passage in enumerate(topK_passages):
print(f'{idx+1}]', passage, '\n')
DSPy Metrics
Function as Metric
To create a custom metric you can create a function that returns either a number or a boolean value:
def parse_integer_answer(answer, only_first_line=True):
try:
if only_first_line:
answer = answer.strip().split('\n')[0]
# find the last token that has a number in it
answer = [token for token in answer.split() if any(c.isdigit() for c in token)][-1]
answer = answer.split('.')[0]
answer = ''.join([c for c in answer if c.isdigit()])
answer = int(answer)
except (ValueError, IndexError):
# print(answer)
answer = 0
return answer
# Metric Function
def gsm8k_metric(gold, pred, trace=None) -> int:
return int(parse_integer_answer(str(gold.answer))) == int(parse_integer_answer(str(pred.answer)))
LLM as Judge
class FactJudge(dspy.Signature):
"""Judge if the answer is factually correct based on the context."""
context = dspy.InputField(desc="Context for the prediction")
question = dspy.InputField(desc="Question to be answered")
answer = dspy.InputField(desc="Answer for the question")
factually_correct = dspy.OutputField(desc="Is the answer factually correct based on the context?", prefix="Factual[Yes/No]:")
judge = dspy.ChainOfThought(FactJudge)
def factuality_metric(example, pred):
factual = judge(context=example.context, question=example.question, answer=pred.answer)
return int(factual=="Yes")
DSPy Evaluation
from dspy.evaluate import Evaluate
evaluate_program = Evaluate(devset=devset, metric=your_defined_metric, num_threads=NUM_THREADS, display_progress=True, display_table=num_rows_to_display)
evaluate_program(your_dspy_program)
DSPy Optimizers
LabeledFewShot
from dspy.teleprompt import LabeledFewShot
labeled_fewshot_optimizer = LabeledFewShot(k=8)
your_dspy_program_compiled = labeled_fewshot_optimizer.compile(student = your_dspy_program, trainset=trainset)
BootstrapFewShot
from dspy.teleprompt import BootstrapFewShot
fewshot_optimizer = BootstrapFewShot(metric=your_defined_metric, max_bootstrapped_demos=4, max_labeled_demos=16, max_rounds=1, max_errors=5)
your_dspy_program_compiled = fewshot_optimizer.compile(student = your_dspy_program, trainset=trainset)
Using another LM for compilation, specifying in teacher_settings
from dspy.teleprompt import BootstrapFewShot
fewshot_optimizer = BootstrapFewShot(metric=your_defined_metric, max_bootstrapped_demos=4, max_labeled_demos=16, max_rounds=1, max_errors=5, teacher_settings=dict(lm=gpt4))
your_dspy_program_compiled = fewshot_optimizer.compile(student = your_dspy_program, trainset=trainset)
Compiling a compiled program - bootstrapping a bootstrapped program
your_dspy_program_compiledx2 = teleprompter.compile(
your_dspy_program,
teacher=your_dspy_program_compiled,
trainset=trainset,
)
Saving/loading a compiled program
BootstrapFewShotWithRandomSearch
Detailed documentation on BootstrapFewShotWithRandomSearch can be found here.
from dspy.teleprompt import BootstrapFewShotWithRandomSearch
fewshot_optimizer = BootstrapFewShotWithRandomSearch(metric=your_defined_metric, max_bootstrapped_demos=2, num_candidate_programs=8, num_threads=NUM_THREADS)
your_dspy_program_compiled = fewshot_optimizer.compile(student = your_dspy_program, trainset=trainset, valset=devset)
Other custom configurations are similar to customizing the BootstrapFewShot
optimizer.
Ensemble
from dspy.teleprompt import BootstrapFewShotWithRandomSearch
from dspy.teleprompt.ensemble import Ensemble
fewshot_optimizer = BootstrapFewShotWithRandomSearch(metric=your_defined_metric, max_bootstrapped_demos=2, num_candidate_programs=8, num_threads=NUM_THREADS)
your_dspy_program_compiled = fewshot_optimizer.compile(student = your_dspy_program, trainset=trainset, valset=devset)
ensemble_optimizer = Ensemble(reduce_fn=dspy.majority)
programs = [x[-1] for x in your_dspy_program_compiled.candidate_programs]
your_dspy_program_compiled_ensemble = ensemble_optimizer.compile(programs[:3])
BootstrapFinetune
from dspy.teleprompt import BootstrapFewShotWithRandomSearch, BootstrapFinetune
#Compile program on current dspy.settings.lm
fewshot_optimizer = BootstrapFewShotWithRandomSearch(metric=your_defined_metric, max_bootstrapped_demos=2, num_threads=NUM_THREADS)
your_dspy_program_compiled = tp.compile(your_dspy_program, trainset=trainset[:some_num], valset=trainset[some_num:])
#Configure model to finetune
config = dict(target=model_to_finetune, epochs=2, bf16=True, bsize=6, accumsteps=2, lr=5e-5)
#Compile program on BootstrapFinetune
finetune_optimizer = BootstrapFinetune(metric=your_defined_metric)
finetune_program = finetune_optimizer.compile(your_dspy_program, trainset=some_new_dataset_for_finetuning_model, **config)
finetune_program = your_dspy_program
#Load program and activate model's parameters in program before evaluation
ckpt_path = "saved_checkpoint_path_from_finetuning"
LM = dspy.HFModel(checkpoint=ckpt_path, model=model_to_finetune)
for p in finetune_program.predictors():
p.lm = LM
p.activated = False
COPRO
Detailed documentation on COPRO can be found here.
from dspy.teleprompt import COPRO
eval_kwargs = dict(num_threads=16, display_progress=True, display_table=0)
copro_teleprompter = COPRO(prompt_model=model_to_generate_prompts, metric=your_defined_metric, breadth=num_new_prompts_generated, depth=times_to_generate_prompts, init_temperature=prompt_generation_temperature, verbose=False)
compiled_program_optimized_signature = copro_teleprompter.compile(your_dspy_program, trainset=trainset, eval_kwargs=eval_kwargs)
MIPRO
from dspy.teleprompt import MIPRO
teleprompter = MIPRO(prompt_model=model_to_generate_prompts, task_model=model_that_solves_task, metric=your_defined_metric, num_candidates=num_new_prompts_generated, init_temperature=prompt_generation_temperature)
kwargs = dict(num_threads=NUM_THREADS, display_progress=True, display_table=0)
compiled_program_optimized_bayesian_signature = teleprompter.compile(your_dspy_program, trainset=trainset, num_trials=100, max_bootstrapped_demos=3, max_labeled_demos=5, eval_kwargs=kwargs)
MIPROv2
Note: detailed documentation can be found here. MIPROv2
is the latest extension of MIPRO
which includes updates such as (1) improvements to instruction proposal and (2) more efficient search with minibatching.
Optimizing with MIPROv2
This shows how to perform an easy out-of-the box run with auto=light
, which configures many hyperparameters for you and performs a light optimization run. You can alternatively set auto=medium
or auto=heavy
to perform longer optimization runs. The more detailed MIPROv2
documentation here also provides more information about how to set hyperparameters by hand.
# Import the optimizer
from dspy.teleprompt import MIPROv2
# Initialize optimizer
teleprompter = MIPROv2(
metric=gsm8k_metric,
auto="light", # Can choose between light, medium, and heavy optimization runs
)
# Optimize program
print(f"Optimizing program with MIPRO...")
optimized_program = teleprompter.compile(
program.deepcopy(),
trainset=trainset,
max_bootstrapped_demos=3,
max_labeled_demos=4,
requires_permission_to_run=False,
)
# Save optimize program for future use
optimized_program.save(f"mipro_optimized")
# Evaluate optimized program
print(f"Evaluate optimized program...")
evaluate(optimized_program, devset=devset[:])
Optimizing instructions only with MIPROv2 (0-Shot)
# Import the optimizer
from dspy.teleprompt import MIPROv2
# Initialize optimizer
teleprompter = MIPROv2(
metric=gsm8k_metric,
auto="light", # Can choose between light, medium, and heavy optimization runs
)
# Optimize program
print(f"Optimizing program with MIPRO...")
optimized_program = teleprompter.compile(
program.deepcopy(),
trainset=trainset,
max_bootstrapped_demos=0,
max_labeled_demos=0,
requires_permission_to_run=False,
)
# Save optimize program for future use
optimized_program.save(f"mipro_optimized")
# Evaluate optimized program
print(f"Evaluate optimized program...")
evaluate(optimized_program, devset=devset[:])
Signature Optimizer with Types
from dspy.teleprompt.signature_opt_typed import optimize_signature
from dspy.evaluate.metrics import answer_exact_match
from dspy.functional import TypedChainOfThought
compiled_program = optimize_signature(
student=TypedChainOfThought("question -> answer"),
evaluator=Evaluate(devset=devset, metric=answer_exact_match, num_threads=10, display_progress=True),
n_iterations=50,
).program
KNNFewShot
from sentence_transformers import SentenceTransformer
from dspy import Embedder
from dspy.teleprompt import KNNFewShot
from dspy import ChainOfThought
knn_optimizer = KNNFewShot(k=3, trainset=trainset, vectorizer=Embedder(SentenceTransformer("all-MiniLM-L6-v2").encode))
qa_compiled = knn_optimizer.compile(student=ChainOfThought("question -> answer"))
BootstrapFewShotWithOptuna
from dspy.teleprompt import BootstrapFewShotWithOptuna
fewshot_optuna_optimizer = BootstrapFewShotWithOptuna(metric=your_defined_metric, max_bootstrapped_demos=2, num_candidate_programs=8, num_threads=NUM_THREADS)
your_dspy_program_compiled = fewshot_optuna_optimizer.compile(student=your_dspy_program, trainset=trainset, valset=devset)
Other custom configurations are similar to customizing the dspy.BootstrapFewShot
optimizer.
DSPy Refine
and BestofN
dspy.Suggest
anddspy.Assert
are replaced bydspy.Refine
anddspy.BestofN
in DSPy 2.6.
BestofN
Runs a module up to N
times with different temperatures and returns the best prediction, as defined by the reward_fn
, or the first prediction that passes the threshold
.
import dspy
qa = dspy.ChainOfThought("question -> answer")
def one_word_answer(args, pred):
return 1.0 if len(pred.answer) == 1 else 0.0
best_of_3 = dspy.BestOfN(module=qa, N=3, reward_fn=one_word_answer, threshold=1.0)
best_of_3(question="What is the capital of Belgium?").answer
# Brussels
Refine
Refines a module by running it up to N
times with different temperatures and returns the best prediction, as defined by the reward_fn
, or the first prediction that passes the threshold
. After each attempt (except the final one), Refine
automatically generates detailed feedback about the module's performance and uses this feedback as hints for subsequent runs, creating an iterative refinement process.
import dspy
qa = dspy.ChainOfThought("question -> answer")
def one_word_answer(args, pred):
return 1.0 if len(pred.answer) == 1 else 0.0
best_of_3 = dspy.Refine(module=qa, N=3, reward_fn=one_word_answer, threshold=1.0)
best_of_3(question="What is the capital of Belgium?").answer
# Brussels
Error Handling
By default, Refine
will try to run the module up to N times until the threshold is met. If the module encounters an error, it will keep going up to N failed attempts. You can change this behavior by setting fail_count
to a smaller number than N
.
refine = dspy.Refine(module=qa, N=3, reward_fn=one_word_answer, threshold=1.0, fail_count=1)
...
refine(question="What is the capital of Belgium?")
# If we encounter just one failed attempt, the module will raise an error.
If you want to run the module up to N times without any error handling, you can set fail_count
to N
. This is the default behavior.