dspy.ToolCalls¶
dspy.ToolCalls
¶
Bases: Type
Functions¶
adapt_to_native_lm_feature(signature: type[Signature], field_name: str, lm: LM, lm_kwargs: dict[str, Any]) -> type[Signature]
classmethod
¶
Adapt the custom type to the native LM feature if possible.
When the LM and configuration supports the related native LM feature, e.g., native tool calling, native
reasoning, etc., we adapt the signature and lm_kwargs to enable the native LM feature.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
signature
|
type[Signature]
|
The DSPy signature for the LM call. |
required |
field_name
|
str
|
The name of the field in the signature to adapt to the native LM feature. |
required |
lm
|
LM
|
The LM instance. |
required |
lm_kwargs
|
dict[str, Any]
|
The keyword arguments for the LM call, subject to in-place updates if adaptation if required. |
required |
Returns:
| Type | Description |
|---|---|
type[Signature]
|
The adapted signature. If the custom type is not natively supported by the LM, return the original |
type[Signature]
|
signature. |
Source code in dspy/adapters/types/base_type.py
description() -> str
classmethod
¶
extract_custom_type_from_annotation(annotation)
classmethod
¶
Extract all custom types from the annotation.
This is used to extract all custom types from the annotation of a field, while the annotation can
have arbitrary level of nesting. For example, we detect Tool is in list[dict[str, Tool]].
Source code in dspy/adapters/types/base_type.py
format() -> list[dict[str, Any]]
¶
from_dict_list(tool_calls_dicts: list[dict[str, Any]]) -> ToolCalls
classmethod
¶
Convert a list of dictionaries to a ToolCalls instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
dict_list
|
A list of dictionaries, where each dictionary should have 'name' and 'args' keys. |
required |
Returns:
| Type | Description |
|---|---|
ToolCalls
|
A ToolCalls instance. |
Example:
```python
tool_calls_dict = [
{"name": "search", "args": {"query": "hello"}},
{"name": "translate", "args": {"text": "world"}}
]
tool_calls = ToolCalls.from_dict_list(tool_calls_dict)
```
Source code in dspy/adapters/types/tool.py
is_streamable() -> bool
classmethod
¶
parse_lm_response(response: str | dict[str, Any]) -> Optional[Type]
classmethod
¶
Parse a LM response into the custom type.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
response
|
str | dict[str, Any]
|
A LM response. |
required |
Returns:
| Type | Description |
|---|---|
Optional[Type]
|
A custom type object. |
Source code in dspy/adapters/types/base_type.py
parse_stream_chunk(chunk: ModelResponseStream) -> Optional[Type]
classmethod
¶
Parse a stream chunk into the custom type.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
chunk
|
ModelResponseStream
|
A stream chunk. |
required |
Returns:
| Type | Description |
|---|---|
Optional[Type]
|
A custom type object or None if the chunk is not for this custom type. |
Source code in dspy/adapters/types/base_type.py
serialize_model()
¶
Source code in dspy/adapters/types/base_type.py
validate_input(data: Any)
classmethod
¶
Source code in dspy/adapters/types/tool.py
:::