dspy.BestOfN
dspy.BestOfN(module: Module, N: int, reward_fn: Callable[[dict, Prediction], float], threshold: float, fail_count: Optional[int] = None)
Bases: Module
Runs a module up to N
times with different temperatures and returns the best prediction
out of N
attempts or the first prediction that passes the threshold
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
module
|
Module
|
The module to run. |
required |
N
|
int
|
The number of times to run the module. |
required |
reward_fn
|
Callable[[dict, Prediction], float]
|
The reward function which takes in the args passed to the module, the resulting prediction, and returns a scalar reward. |
required |
threshold
|
float
|
The threshold for the reward function. |
required |
fail_count
|
Optional[int]
|
The number of times the module can fail before raising an error. Defaults to N if not provided. |
None
|
Example
import dspy
dspy.settings.configure(lm=dspy.LM("openai/gpt-4o-mini"))
# Define a QA module with chain of thought
qa = dspy.ChainOfThought("question -> answer")
# Define a reward function that checks for one-word answers
def one_word_answer(args, pred):
return 1.0 if len(pred.answer.split()) == 1 else 0.0
# Create a refined module that tries up to 3 times
best_of_3 = dspy.BestOfN(module=qa, N=3, reward_fn=one_word_answer, threshold=1.0)
# Use the refined module
result = best_of_3(question="What is the capital of Belgium?").answer
# Returns: Brussels
Source code in dspy/predict/best_of_n.py
Functions
__call__(*args, **kwargs)
Source code in dspy/primitives/program.py
batch(examples, num_threads: Optional[int] = None, max_errors: int = 10, return_failed_examples: bool = False, provide_traceback: Optional[bool] = None, disable_progress_bar: bool = False)
Processes a list of dspy.Example instances in parallel using the Parallel module.
:param examples: List of dspy.Example instances to process. :param num_threads: Number of threads to use for parallel processing. :param max_errors: Maximum number of errors allowed before stopping execution. :param return_failed_examples: Whether to return failed examples and exceptions. :param provide_traceback: Whether to include traceback information in error logs. :return: List of results, and optionally failed examples and exceptions.
Source code in dspy/primitives/program.py
deepcopy()
Deep copy the module.
This is a tweak to the default python deepcopy that only deep copies self.parameters()
, and for other
attributes, we just do the shallow copy.
Source code in dspy/primitives/module.py
dump_state()
forward(**kwargs)
Source code in dspy/predict/best_of_n.py
get_lm()
load(path)
Load the saved module. You may also want to check out dspy.load, if you want to load an entire program, not just the state for an existing program.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
Path to the saved state file, which should be a .json or a .pkl file |
required |
Source code in dspy/primitives/module.py
load_state(state)
map_named_predictors(func)
named_parameters()
Unlike PyTorch, handles (non-recursive) lists of parameters too.
Source code in dspy/primitives/module.py
named_predictors()
named_sub_modules(type_=None, skip_compiled=False) -> Generator[tuple[str, BaseModule], None, None]
Find all sub-modules in the module, as well as their names.
Say self.children[4]['key'].sub_module is a sub-module. Then the name will be 'children[4][key].sub_module'. But if the sub-module is accessible at different paths, only one of the paths will be returned.
Source code in dspy/primitives/module.py
parameters()
predictors()
reset_copy()
save(path, save_program=False)
Save the module.
Save the module to a directory or a file. There are two modes:
- save_program=False
: Save only the state of the module to a json or pickle file, based on the value of
the file extension.
- save_program=True
: Save the whole module to a directory via cloudpickle, which contains both the state and
architecture of the model.
We also save the dependency versions, so that the loaded model can check if there is a version mismatch on critical dependencies or DSPy version.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
Path to the saved state file, which should be a .json or .pkl file when |
required |
save_program
|
bool
|
If True, save the whole module to a directory via cloudpickle, otherwise only save the state. |
False
|