dspy.TwoStepAdapter
dspy.TwoStepAdapter(extraction_model: LM)
Bases: Adapter
A two-stage adapter that
- Uses a simpler, more natural prompt for the main LM
- Uses a smaller LM with chat adapter to extract structured data from the response of main LM
This adapter uses a common call logic defined in base Adapter class. This class is particularly useful when interacting with reasoning models as the main LM since reasoning models are known to struggle with structured outputs.
Example:
import dspy
lm = dspy.LM(model="openai/o3-mini", max_tokens=10000, temperature = 1.0)
adapter = dspy.TwoStepAdapter(dspy.LM("openai/gpt-4o-mini"))
dspy.configure(lm=lm, adapter=adapter)
program = dspy.ChainOfThought("question->answer")
result = program("What is the capital of France?")
print(result)
Source code in dspy/adapters/two_step_adapter.py
Functions
__call__(lm: LM, lm_kwargs: dict[str, Any], signature: Type[Signature], demos: list[dict[str, Any]], inputs: dict[str, Any]) -> list[dict[str, Any]]
Source code in dspy/adapters/base.py
format(signature: Type[Signature], demos: list[dict[str, Any]], inputs: dict[str, Any]) -> list[dict[str, Any]]
Format a prompt for the first stage with the main LM. This no specific structure is required for the main LM, we customize the format method instead of format_field_description or format_field_structure.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
signature
|
Type[Signature]
|
The signature of the original task |
required |
demos
|
list[dict[str, Any]]
|
A list of demo examples |
required |
inputs
|
dict[str, Any]
|
The current input |
required |
Returns:
Type | Description |
---|---|
list[dict[str, Any]]
|
A list of messages to be passed to the main LM. |
Source code in dspy/adapters/two_step_adapter.py
format_assistant_message_content(signature: Type[Signature], outputs: dict[str, Any], missing_field_message: str = None) -> str
Source code in dspy/adapters/two_step_adapter.py
format_conversation_history(signature: Type[Signature], history_field_name: str, inputs: dict[str, Any]) -> list[dict[str, Any]]
Format the conversation history.
This method formats the conversation history and the current input as multiturn messages.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
signature
|
Type[Signature]
|
The DSPy signature for which to format the conversation history. |
required |
history_field_name
|
str
|
The name of the history field in the signature. |
required |
inputs
|
dict[str, Any]
|
The input arguments to the DSPy module. |
required |
Returns:
Type | Description |
---|---|
list[dict[str, Any]]
|
A list of multiturn messages. |
Source code in dspy/adapters/base.py
format_demos(signature: Type[Signature], demos: list[dict[str, Any]]) -> list[dict[str, Any]]
Format the few-shot examples.
This method formats the few-shot examples as multiturn messages.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
signature
|
Type[Signature]
|
The DSPy signature for which to format the few-shot examples. |
required |
demos
|
list[dict[str, Any]]
|
A list of few-shot examples, each element is a dictionary with keys of the input and output fields of the signature. |
required |
Returns:
Type | Description |
---|---|
list[dict[str, Any]]
|
A list of multiturn messages. |
Source code in dspy/adapters/base.py
format_field_description(signature: Type[Signature]) -> str
Format the field description for the system message.
This method formats the field description for the system message. It should return a string that contains the field description for the input fields and the output fields.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
signature
|
Type[Signature]
|
The DSPy signature for which to format the field description. |
required |
Returns:
Type | Description |
---|---|
str
|
A string that contains the field description for the input fields and the output fields. |
Source code in dspy/adapters/base.py
format_field_structure(signature: Type[Signature]) -> str
Format the field structure for the system message.
This method formats the field structure for the system message. It should return a string that dictates the format the input fields should be provided to the LM, and the format the output fields will be in the response. Refer to the ChatAdapter and JsonAdapter for an example.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
signature
|
Type[Signature]
|
The DSPy signature for which to format the field structure. |
required |
Source code in dspy/adapters/base.py
format_task_description(signature: Signature) -> str
Create a description of the task based on the signature
Source code in dspy/adapters/two_step_adapter.py
format_user_message_content(signature: Type[Signature], inputs: dict[str, Any], prefix: str = '', suffix: str = '') -> str
Source code in dspy/adapters/two_step_adapter.py
parse(signature: Signature, completion: str) -> dict[str, Any]
Use a smaller LM (extraction_model) with chat adapter to extract structured data from the raw completion text of the main LM.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
signature
|
Signature
|
The signature of the original task |
required |
completion
|
str
|
The completion from the main LM |
required |
Returns:
Type | Description |
---|---|
dict[str, Any]
|
A dictionary containing the extracted structured data. |