LabeledFewShot
This page is outdated and may not be fully accurate in DSPy 2.5
Constructor
The constructor initializes the LabeledFewShot
class and sets up its attributes, particularly defining k
number of samples to be used by the predictor.
Parameters:
- k
(int): Number of samples to be used for each predictor. Defaults to 16.
Method
compile(self, student, *, trainset)
This method compiles the LabeledFewShot
instance by configuring the student
predictor. It assigns subsets of the trainset
in each student's predictor's demos
attribute. If the trainset
is empty, the method returns the original student
.
Parameters:
- student
(Teleprompter): Student predictor to be compiled.
- trainset
(list): Training dataset for compiling with student predictor.
Returns:
- The compiled student
predictor with assigned training samples for each predictor or the original student
if the trainset
is empty.
Example
import dspy
#Assume defined trainset
class RAG(dspy.Module):
def __init__(self, num_passages=3):
super().__init__()
#declare retrieval and predictor modules
self.retrieve = dspy.Retrieve(k=num_passages)
self.generate_answer = dspy.ChainOfThought(GenerateAnswer)
#flow for answering questions using predictor and retrieval modules
def forward(self, question):
context = self.retrieve(question).passages
prediction = self.generate_answer(context=context, question=question)
return dspy.Prediction(context=context, answer=prediction.answer)
#Define teleprompter
teleprompter = LabeledFewShot()
# Compile!
compiled_rag = teleprompter.compile(student=RAG(), trainset=trainset)